US009176970B2

a2 United States Patent 10) Patent No.: US 9,176,970 B2
Roseman et al. 45) Date of Patent: Nov. 3, 2015
(54) PROCESSING ELECTRONIC MESSAGES ;,ggg,gg g% ?ggg gOIdman
,095, owan
. 8,307,038 B2 112012 Gill
(71) Applicant: SaneBox, Inc., Boston, MA (US) 312,096 B2 112012 C(l)hlégl
8,346,875 B2 1/2013 Gillai
(72) Inventors: Stuart Roseman, Boston, MA (US); 2003/0187937 A1* 10/2003 Ya0 ..cccccoccovvrvrrnnnn. HO041. 12/585
Kristoffer Lange, Saugus, MA (US); 0030231207 AL 120003 H 709/206
. uang
Jason Gloudon, Southfield, MI (US); 2004/0019651 Al* 12004 Andaker HOAL 51/12
Jason Yanowitz, Evanston, IL (US); 709/207
Peter Kovacs, Waxhaw, NC (US) 2004/0255122 Al* 12/2004 Ingerman G06Q 10/107
713/176
(73) Assignee: SaneBox, Inc., Boston, MA (US) 2005/0065906 A1* 3/2005 Romero G7%67(/2958/ (1)81
. 2006/0235933 Al 10/2006 Baluja '
(*) Notice: SUbJeCt. to any dlsclalmer,. the term of this 2007/0179945 A1l* 8/2007 MAarston G06Q 10/107
patent is extended or adjusted under 35 707/999.005
U.S.C. 154(b) by 175 days. 2008/0126496 Al 5/2008 Warren
2012/0215861 Al* 82012 Smith G06Q 10/107
21) Appl. No.: 13/968,680 709/206
2D pp © ’ 2013/0166657 Al 6/2013 Tadayon
(22) Filed: Aug. 16, 2013 2014/0164528 Al* 6/2014 Kleppmann HO4L 67/2804
: b 709/206
. L. 2014/0280624 Al* 9/2014 Dillingham HO4L 12/1859
(65) Prior Publication Data 709/206
US 2015/0052177 Al Feb. 19, 2015 FOREIGN PATENT DOCUMENTS
(1) Int. Cl. WO WO 2004/030296 Al 4/2004
GO6F 17/30 (2006.01) WO WO 11/2014
G06Q 10/10 (2012.01) PCT/US14/49950
(52) US.CL * cited by examiner
CPC ... GOG6F 17/30115 (2013.01); GO6Q 10/107
(2013.01) Primary Examiner — Scott A Waldron
(58) Field of Classification Search (74) Attorney, Agent, or Firm — Lange IP Law
CPC it GOG6F 17/30115
See application file for complete search history. 57 ABSTRACT
. The invention relates to a system for processing electronic
(56) References Cited messages. The system includes a communications module
U.S. PATENT DOCUMENTS configured to interoperate with a plurality of email servers
o and coupled to a message processing module. The message
5377354 A 12/1994 Scannell processing module is configured to identify inbound mes-
5,999,932 A 12/1999 Paul sages and process such messages based on statistical analysis,
6,023,723 A 2/2000 McCormick user training, and shared rules. The system is compatible with
g’ig}’;gg gl 1%; 3882 ﬁorgltz ok most existing email clients and servers. The invention also
7990033 Bl 10/2007 G(fl lormlc relates to methods for processing messages and methods for
7,539,699 B2 5/2009 Kobashikawa training message processing systems.
7,587,461 B2 9/2009 Baluja
7,617,286 B2 11/2009 Goldman 16 Claims, 7 Drawing Sheets

FETGH EAIL ACCOUNT RECORD 802
DECRYPT AUTHENTICATION TOKERS 804
ESTABLISH EMAIL SERVER SESSION &6

FETOH INBOX FOLDER RECORD 608

v
MESSAGES?
12
Yis
‘SELEGT NEXT UNPROGESSED MESSAGE &4
FETCH TRAINING RECORDS 618
DETERMINE AGTION AND TARGET FOLDERS 18]
‘GOPYMOVE MESSAGE T0 TARGET FOLDERS £20]
'STORE PROCESSED MESSAGE RECORD 622
'STORE INBOK FOLDER RECORD 624

SHUTDOWN?

28

END VAIL SERVER SESSION 630

vEs

WAIT FOR
NEW/ MESSAGES,
28

US 9,176,970 B2

Sheet 1 of 7

Nov. 3, 2015

U.S. Patent

| Ol

S30IA3A ONILNANOD ¥3SsN

|01
438N

BO0T BO0T B90T
IN3ITO 1IvINT IN3ITD TIVINT IN3ITD TIVINT
90T INOHdJ 1YVINS 901 1319vl 901 43.1LNdINOD
201 201 201
SERY<E S d3INH3IS SERYER)
TIVYING TIVING TIVINL

435
H3AL3S

y

INNODJOV

ool

H3AL3S
ONISS3D0Hd
JOVSSIN

||

¥ol
LN3OV
1HOdSNVHL
1IN

¥ol
1IN3IOV
1HOdSNVHL
TVYIN

Ol
1IN3IOV
1HOdSNVHL
1IN

US 9,176,970 B2

Sheet 2 of 7

Nov. 3, 2015

U.S. Patent

TTZ eInpol Buisseooid sbesss|

¢ Ol

907
(s)eoepusul
NIOMION

9il¢

ZLZ SINPOJ\ Suoleslunwwo)
012 8|Npo\ eseqeleq
30¢C wea)sAg bunelsdp
00¢
20C Kiows Nd9
00T JoAI5S DUISS3001d 9bBSSaN

US 9,176,970 B2

Sheet 3 of 7

Nov. 3, 2015

U.S. Patent

€ Old

2oBuBU| JBS |eolydel 90t

9T Loy Jos([ealydess % o
E AN J9[]0J3U0D) JUNOJDY - NIOMION
ZIS ©INpPOJ\ Suoleslunwwo))
0r¢ S|NpOI\ 8seqeieq a

wolsAg Bunesad gLe
30¢ }SAS bun @) 5o¢E

NdO

20 Aows|y

U.S. Patent Nov. 3, 2015 Sheet 4 of 7 US 9,176,970 B2
EMAIL ACCOUNT RECORD 400
ACCOUNT ID HOST PROTOCOL PORT SECURE? USERNAME PASSWORD
£ Y A A £ £ £
400a 400b 400c 400d 400e 400f 400g
FOLDER RECORD 402
ACCOUNT ID FOLDER ID VALIDITY LAST MESSAGE ID| IMPORTANCE
1 £ £ £ 5
402a 402b 402¢ 402d 402e
FIG. 4B
TRAINING RECORD 404
ACCOUNT ID KEY VALUE ACTION CREATE TIME
404a 404b 404c 404d 404e
FIG. 4C
PROCESSED MESSAGE RECORD 406
ACCOUNT ID MESSAGE ID FOLDER ID | FOLDER ID
406a 406b 406¢

FIG. 4D

U.S. Patent Nov. 3, 2015 Sheet 5 of 7 US 9,176,970 B2

START (_/‘ 500

A
FETCH EMAIL ACCOUNT RECORD 202

v
DECRYPT AUTHENTICATION TOKENS 504
ESTABLISH EMAIL SERVER SESSION 506
RETRIEVE FOLDER LIST 208

v
CREATE DEFAULT IMPORTANCE FOLDERS 510
STORE FOLDER RECORDS 812
DETERMINE SENT FOLDERS 214
RETRIEVE SENT MESSAGE HEADERS 516
DETERMINE RECIPIENT IMPORTANCES 518
STORE TRAINING RECORDS 920

v
END EMAIL SERVER SESSION 822

END

FIG. 5

U.S. Patent Nov. 3, 2015 Sheet 6 of 7 US 9,176,970 B2

(—/— 600

¢

FETCH EMAIL ACCOUNT RECORD 602
v

DECRYPT AUTHENTICATION TOKENS ~ 604
v

ESTABLISH EMAIL SERVER SESSION 606

FETCH INBOX FOLDER RECORD 608

RETRIEVE HEADERS FOR NEW MESSAGES 610 |
A\l
e MESSAGES? 7%)
612
YES

A 4

SELECT NEXT UNPROCESSED MESSAGE 614

FETCH TRAINING RECORDS 616

DETERMINE ACTION AND TARGET FOLDERS 618
NO
v
COPY/MOVE MESSAGE TO TARGET FOLDERS 620
STORE PROCESSED MESSAGE RECORD 622 |——
STORE INBOX FOLDER RECORD 624
\ »< SHUTDOWN? NO— | _ WAIT FOR

NEW MESSAGES

526 628

END MAIL SERVER SESSION 630

I
YES

FIG. 6

U.S. Patent

Nov. 3, 2015 Sheet 7 of 7

US 9,176,970 B2

J 700

FETCH EMAIL ACCOUNT RECORD 702

v
DECRYPT AUTHENTICATION TOKENS 704
ESTABLISH EMAIL SERVER SESSION 706
v
SELECT TRAINING FOLDER 708
RETRIEVE MESSAGE IDS 710
FETCH PROCESSED MESSAGE RECORDS 712
ASSOCIATED WITH TRAINING FOLDER
v
DETERMINE TRAINED MESSAGE IDS 714
RETRIEVE TRAINED MESSAGE HEADERS 716
STORE TRAINING RECORDS 718
END EMAIL SERVER SESSION 720

FIG. 7

US 9,176,970 B2

1
PROCESSING ELECTRONIC MESSAGES

FIELD OF THE INVENTION

The present invention relates to systems and methods for
processing electronic messages.

BACKGROUND OF RELATED TECHNOLOGY

Electronic mail (email) is an established form of commu-
nication used ubiquitously by individuals in business and
private sectors. An email user may receive a large number of
inbound email messages in a given day, which are tradition-
ally delivered to a single folder (typically referred to as the
“Inbox”) in the user’s email system. To identify those mes-
sages that the user considers important, the user must review
each message in the Inbox, and must manually delete mes-
sages that are not considered to be important in order to
remove them from the Inbox. Such systems are therefore
inefficient in that they require the user to spend a considerable
amount of time managing inbound email.

To improve on such traditional systems, some modern
email systems provide “filters” which act on (process)
inbound messages. Such filters may be based on rules estab-
lished by the user which define a set of actions to be per-
formed on inbound messages. For example, the user may
create a rule whereby any message containing the phrase
“Special Offer” is filtered by the system such that it is deliv-
ered to a folder intended to contain unimportant messages
(e.g.a“Spam” folder). Depending on the system, the message
may be automatically moved to the Spam folder upon deliv-
ery to the Inbox, or it may bypass the Inbox and be delivered
directly to the Spam folder.

While such rule-based-filters provide the user with precise
control over inbound messages, they can be time-consuming
to create and maintain. Moreover, rule-based filters will not
filter messages that do not match a rule previously established
by the user, requiring the user to manually review and act on
such messages.

To overcome the limitations of rule-based filters, some
email systems now include “predictive” filters. Predictive
filters use fuzzy logic to determine the action that should be
taken on inbound messages, on the basis of message infor-
mation and a priori information that is stored in the system.
Thus, predictive filters are capable of operating without user
intervention and may also capable of acting on messages from
unknown recipients. For example, email systems are known
that rank inbound messages based on metrics derived from
earlier user actions to related messages (e.g. Gmail’s™ Pri-
ority Inbox™ feature; U.S. Published Application No.
US20060235933; U.S. Pat. No. 8,095,612).

Some email systems that rank/prioritize email may rely on
a specific email client having a custom User Interface (UT) to
visually separate important from messages from unimportant
messages. Such email systems have a server and client parts
which are designed to be used together and thus may be
incompatible, or provide degraded operation if a third-part
email client is used. For example, Priority Inbox™ provides a
custom web UT and mobile application UI (e.g. U.S. Pat. No.
8,312,096) to visually separate a user’s Inbox into two or
more distinct groups, such as “Important” messages and
“Everything Else.” However, if a third-party email client is
used in conjunction with Gmail’s™ email server, such a
visual separation between important and unimportant mes-
sages may be lost.

While rule-based filters and predictive filters offer
increased efficiency in managing email, they are not included

25

35

40

45

50

65

2

in all email systems. Further, many users currently use legacy
email systems that lack one or more of the features described
above. Some users may be reluctant to switch email systems
because of the time and effort involved. Other users may be
required by their employer to use a legacy email system.

Thus, there is a need in the art for improved email filtering
systems, in particular systems which may be used universally,
which are compatible with existing email servers and clients,
and which may be customized and/or expanded upon to meet
a user’s specific needs.

SUMMARY OF THE INVENTION

The present invention provides systems and methods for
processing electronic messages which are capable of working
with existing systems. Thus, the systems and methods of the
present invention allow a user to customize and expand on the
filtering features of an existing email system, including add-
ing various filtering capabilities to an existing system that
lacks some or all such capabilities. Moreover, the systems and
methods disclosed herein are compatible with existing elec-
tronic message clients, including desktop, mobile, and tablet
email applications.

In one aspect, a method for processing electronic messages
includes: connecting to a message server; accessing a user
account; retrieving a plurality of source message identifiers
from the message server, each source being associated with a
source folder; selecting a target message identifier from the
plurality of source messages identifiers; determining a target
folder associated with the account; and instructing the mes-
sage server to copy the target message from the source folder
to the target folder.

The method can further include one or more of the follow-
ing steps: instructing the message server to delete the message
associated with the target message identifier from the source
folder; storing a processed message record in a database, the
processed message record having a message identifier asso-
ciated with the target message identifier and a folder identifier
associated with the target folder; fetching a user account
record from a database, the account record having a plurality
of'authentication tokens, and authenticating with the message
server using the plurality of authentication tokens, which may
be encrypted; fetching a source folder record from a database,
the source folder record having a folder identifier associated
with the source folder and a last message identifier, wherein
retrieving a plurality of source message identifiers is based
upon the last message identifier; receiving a notification from
the message server in response to a message being delivered
to the source folder; retrieving metadata associated with the
target message identifier, wherein the target folder is deter-
mined by comparing the target message metadata to a plural-
ity of training records; and fetching a plurality of folder
records from a database, each folder record having a last
known folder identifier, retrieving a plurality of current folder
identifiers from the message server, comparing the plurality
of last known folder identifiers to the plurality of current
folder identifiers, and storing a folder record, the folder
record having a folder identifier associated with the renamed
folder.

The method can further include: selecting a training folder
within the account; retrieving a first plurality of message
identifiers from the message server, each message having an
identifier and being associated within the training folder;
retrieving a second plurality of message identifiers from the
message server, each message having an identifier and being
associated within the training folder; detecting a trained mes-
sage identifier included in the second plurality of messages

US 9,176,970 B2

3

and not included in the first plurality of messages; retrieving
metadata (e.g. information about the message sender) asso-
ciated with the trained message identifier; and storing a train-
ing record, the training record having a folder identifier asso-
ciated with the training folder identifier and metadata
associated with the trained message metadata.

In another aspect, a computer system includes: a commu-
nications module configured to retrieve a plurality of message
identifiers from a message server and to instruct the message
server to copy a message from a first folder to a second folder;
and a message processing module coupled to the communi-
cations module and configured to determine a source folder
associated with user account upon a message server, retrieve
a plurality of source message identifiers using the communi-
cations module, each source message being associated with
the source folder, select a target message identifier from the
plurality of source message identifiers, determine a target
folder associated with the user account and instruct the mes-
sage server to copy a message associated with the target
message identifier from the source folder to the target folder.

The computer system can further include a database mod-
ule configured to store a processed message records in a
database, each processed message record having a message
identifier and a folder identifier, wherein the message pro-
cessing module is coupled to the database module and further
configured to store processed message record associated with
the target message identifier and the target folder. The data-
base module can be further configured to store training
records to the database, each training record having a folder
identifier and metadata, and the message processing module
can be further configured to determine a training folder within
the account, retrieve a first plurality of message identifiers
from the message server, each message having an identifier
and being associated within the training folder, retrieve a
second plurality of message identifiers from the message
server, each message having an identifier and being associ-
ated within the training folder, detect a trained message iden-
tifier included in the second plurality of messages and not
included in the first plurality of messages, retrieve metadata
associated with the trained message identifier, and store a
training record using the database module, the training record
folder identifier associated with the training folder and the
training record metadata associated with the trained message
metadata.

In another aspect, a computer program product embodied
on a computer medium includes instructions for: connecting
to a message server; accessing a user account; determining a
source folder associated with the user account; retrieving a
plurality of source messages from the message server, each
source message having an identifier and being associated
within the source folder, selecting a target message from the
plurality of source messages; determining a target folder
associated with the account; and instructing the message
server to copy the target message from the source folderto the
target folder.

The computer program product can further include instruc-
tions for: detecting that a folder within the account was
renamed and storing a folder record associated with the
renamed folder; determining a training folder within the
account; retrieving a first plurality of message identifiers from
the message server, each message having an identifier and
being associated within the training folder; retrieving a sec-
ond plurality of message identifiers from the message server,
each message having an identifier and being associated
within the training folder; detecting a trained message iden-
tifier included in the second plurality of messages and not
included in the first plurality of messages; retrieving metadata

10

20

25

30

35

40

45

55

60

65

4

associated with the trained message identifier; and storing a
training record, the training record having a folder identifier
associated with the training folder and metadata associated
with the trained message metadata.

BRIEF DESCRIPTION OF THE DRAWINGS

For a better understanding of various aspects of the inven-
tion and embodiments thereof, reference should be made to
the detailed description below, in conjunction with the fol-
lowing drawings in which like reference numerals refer to
corresponding parts throughout the figures.

FIG. 1 is a network block diagram showing an exemplary
electronic message processing system coupled to existing
email systems.

FIG. 2 is a system block diagram showing an illustrative
message processing server for use in the electronic message
processing system of FIG. 1.

FIG. 3 is a system block diagram showing an illustrative
account server for use in the electronic message processing
system of FIG. 1.

FIGS. 4A-D are pictorials showing several illustrative
database records for use by the electronic message processing
system of FIG. 1.

FIG. 5 is a flowchart showing an illustrative method of
configuring an account for use in an electronic message pro-
cessing system.

FIG. 6 is a flowchart showing an illustrative method of
processing electronic messages.

FIG. 7 is a flowchart showing an illustrative method of
training an electronic message processing system.

DETAILED DESCRIPTION OF THE INVENTION

Before describing the present invention, some introductory
concepts and terminology are explained. As used herein, a
computer system “user” is any person or machine that inter-
acts with the computer system. As used herein, the term
“electronic message” means any electronic communication
that is sent by at least one user (the sender) to at least one user
(the recipient); the sender and the recipient may be the same
user or different users. As used herein, the terms “process”
and “application process” mean any computing task that is
currently executing, or scheduled to execute, on a computer
processor. The term “parent process” means a process that
created/spawned at least one other process and the term “child
process” means a process that was created/spawned by
another process. As used herein, the term “metadata” is used
to refer to any portion of an electronic message other than the
message body and may include any/all email headers as
described in RFC 822, which is incorporated herein by refer-
ence in its entirety. The terms “metadata” and “headers” may
be used synonymously herein. The term “folder” is used
herein to refer to a grouping of email messages upon an email
server. The terms “folder” and “mailbox” may be used inter-
changeably herein.

Reference will sometimes herein be made to specific ver-
sions and extensions to the IMAP protocol. Such protocols
and extensions are described in several Request For. .. RFCs,
including RFCs 1730, 1731, 1734, 2060, 2086-2088, 2177,
2180,2192,2195,2342,2359,2449,2595,2831,2919, 2971,
3348,3501,3502,3516,3691,4314,4315, 4466-4469, 4550,
4551,4731,4959,4978, 5032, 5092, 5161, 5162,5182, 5228,
5255-5258, 5321, 5423, 5464, 5465, 5530, 5593, 5703, 5738,
5788, 5819, 5957, 6154, 6203, and 6237, each of which is
available at http://www.ietf.org/rfc. htm] and hereby incorpo-
rated by reference in its entirety.

US 9,176,970 B2

5

Reference will sometimes herein be made to the Exchange
Web Services (EWS) protocol. A description of EWS is avail-
able at http://msdn.microsoft.com/en-us/library/exchange/
bb204119.aspx, which is hereby incorporated by reference in
its entirety.

Reference will sometimes herein be made to the Simple
Mail Transfer Protocol (SMTP). A description of SMTP is
available at http://tools.ietf.org/html/rfc5321, which is
hereby incorporated by reference in its entirety.

Referring to FIG. 1, an electronic message processing sys-
tem 114 is shown within an illustrative network environment.
The system 114 may include a message processing server 100
and an account server 112, as shown. The illustrative network
environment further includes a plurality of email servers 102,
a plurality of mail transport agents (MTAs) 104, and a plu-
rality of user computing devices 106. Although three (3)
email servers 102 and three (3) MTAs 104 are shown in FIG.
1, the present system is compatible with any number of email
servers and MTAs. The message processing server 100, the
MTAs 104, and the computing devices 106 may be configured
to connect to and communicate with the email servers 102 via
a network 110. A user 108 may interact with the plurality of
computing devices 106 and corresponding email client appli-
cations 106a, as shown. For ease of explanation, the user
computing devices 106 and respective client applications
1064 will sometimes herein be referred to as “clients.”” The
account server 112 may be coupled to the message processing
server 100 and to the plurality of user computing devices 106
via the network 110. The message processing server 100 and
account server 112 are discussed further below in conjunction
with FIGS. 2 and 3, respectively.

The network 110 may be any suitable local-area network
(LAN) or wide-area network (WAN) connection, including
the Internet. It will be appreciated that the plurality of email
servers 100-102, MTAs 104, and clients 106 may be con-
nected to the network 110 using any suitable wired or wireless
type of connection.

Each of the email servers 102 can be any suitable comput-
ing platform capable of running an email server application,
which includes personal computers (PC), a rack-mounted
server hardware, and a virtual host in a cloud computing
environments. Each email server application can be any soft-
ware that is configured to receive inbound email from a MTA,
such as MTA 104, and providing certain email retrieval capa-
bilities (described in detail below in conjunction with FIG. 2).
As is known in the art, most email server applications 102a
implement at least one standardized protocol for email
retrieval, such as Exchange Web Services (EWS) and/or
IMAP. Thus, by supporting a relatively small number of stan-
dardized protocols, the present invention is compatible with
most existing email servers, including proprietary servers,
such as Microsoft Exchange™, and open-source email serv-
ers, such as Dovecot.

Each of the mail transport agents (MTA) 104 may be any
suitable hardware and/or software configured to deliver
inbound email to one or more email server 102 and to actas a
relay between a sender’s computer/email application and the
destination email servers 102. As those skilled in the art
should appreciate, each MTA 104 may represent a plurality of
MTAs wherein intermediate MTAs are “chained” together
and the MTA 104 represents only the end of the “chain.”
Typically, an email server 102 will also implement SMTP,
thus allowing it to receive inbound email from the MTA 104.

As shown in FIG. 1, the user computing devices 106 may
have various types and form factors, and non-limiting
examples include desktop computers, notebook computers,
mobile phones, smartphones, tablet computers, and wearable

10

15

20

25

30

35

40

45

50

55

60

65

6

computers. Each computing device 106 may include an email
client 106a, which is typically a software application config-
ured to receive email message information (e.g. headers and/
or body) from an email server 102 and that message informa-
tion to auser 108. Each email client 1064 may be a standalone
application which the user may install on a computing device
or a web application which is hosted on a web server and
accessed via a web browser. Thus, the email clients 106a may
include webmail services such as Yahoo! Mail™, desktop
applications such as Microsoft Outlook™ and Eudora™, and
mobile applications such as the Gmail™ application avail-
able on many smartphones and tablet computers. Thus, it
should be appreciated that the present invention is compatible
with many existing email clients.

Referring now to FIG. 2 in which like elements of FIG. 1
are shown having like reference designations, a message pro-
cessing server 100 may include a CPU 200, a memory 202, a
disk 204, and a network interface 206, all of which are
coupled together viaa communications bus 216. The message
processing server 100 may be connected to a plurality of
email servers 102 (shown in FIG. 1) via network interface
206. The message processor server 100 may be part of any
suitable computing platform, including a personal computer
(PC), a rack-mounted server, and a virtual host in a cloud
computing environment.

The message processing server 100 may include an oper-
ating system (OS) 208 that is configured to access the
memory 202, the disk 204, and the network interface 206. The
OS 208 may be any suitable operating system, including
Linux, BSD, OSX, and Windows. A database module 210, a
communications module 212, and a message processing
module 214 (collectively referred to herein as “the modules™)
interact with the OS 208 and thus may have (indirect) access
to the memory 202, the disk 204, and the network interface
206.

Each of the modules 210-214 will be described more fully
hereinbelow, however it should first be noted that each of the
modules generally represent certain functionality that can be
implemented in software. Those skilled in the art will there-
fore appreciate that the modules 210-214 can be provided in
several forms, including as standalone applications, a plural-
ity of software libraries (either statically or dynamically
linked), compiled executable code, and/or a plurality of inter-
preted source code files.

In one embodiment, each of the modules 210-214 is
included within a common daemon application, the OS is
capable of multiprocessing (i.e. running multiple concurrent
application processes), and a plurality of daemon application
processes may be run concurrently within the message pro-
cessing server 100. A parent daemon application process
(“parent process”) may be provided to spawn and manage a
plurality of child daemon application processes (“child pro-
cess”). The parent process can be launched either manually
by a user or automatically when the server 100 boots up. The
parent process may spawn/launch (e.g. using the Linux
“fork” system call) a plurality of child processes, each of
which utilized some/all of the functionality provided by the
modules 210-214. The parent process may delegate work to
any of the child processes, may coordinate work among the
child process, and may manage the child process lifecycles. In
one embodiment, the message processing server operates on
a plurality of user email accounts and each user email
accounts is assigned to and operated on by one ofthe plurality
of child processes. In certain embodiments, the parent pro-
cess and/or the child processes may be multithreaded.

The database module 210 may be configured to operate on
structured data (records) and to read and write records onto a

US 9,176,970 B2

7

nonvolatile memory device, such as disk 204. The various
types of records for use within the database module 210 are
collectively known as “the schema” and may include an email
account record, a folder record, a training record, and a pro-
cessed message record, each of which is described below in
conjunction with FIGS. 4A-4D. In one embodiment, the data-
base module 210 includes and/or utilizes a Relational Data-
base Management System (RDBMS). It should be appreci-
ated that certain RDBMSs, such as MySQL™, provide a
standalone server application and a client library configured
to communicate with the server application. However, certain
other RDBMSs, such as SQL.ite, are provided as standalone
libraries which can be embedded within an application. Thus,
in certain embodiments the database module 210 may include
a server application and a client library, whereas in other
embodiments, it may include just a client library. The data-
base module 210 may further include an encryption library
capable of performing symmetric encryption and decryption
on blocks and/or streams of data. In certain embodiments, the
database module 210 stores data records in an unstructured
database, such as flat files or a key/value store.

The database module 210 may provide a high-level record
management interface to the other modules 212-214. For
example, the database module 210 interface may include the
standard Create, Read, Update, and Delete (CRUD) opera-
tions for each type of record included in the schema. As part
of these operations, the database module 210 may perform a
plurality of sub-operations including, but not limited to, vali-
dating untrusted data, encrypting/decrypting sensitive data,
and providing notifications that a record was accessed, modi-
fied, or deleted. In one embodiment, the data module 210
includes and utilizes an Object Relational Mapping (ORM)
library such as Hibernate (Java) or ActiveRecord (Ruby)
which may provide CRUD operations and at least some of the
sub-operations listed above. It should therefore be appreci-
ated that the database module 210 may encapsulate relatively
low-level database operations within a high-level interface
that can be used other modules 212-214.

The communications module 212 may be configured to
communicate with each of the plurality of email servers 102
using network interface 206 via the operating system 208 and

10

15

20

25

30

35

40

8

the bus 216. The network interface 206 may be a hardware-
based network interface card (NIC) or a virtual network inter-
face, such as may be provided in a cloud computing environ-
ment. In one embodiment, the network interface 206 is an
Ethernet adapter. The communications module 212 may
include networking libraries that implement various Internet
protocols/layers, suchas ARP, IP, DNS, TCP, SSL, HTTP, and
SOAP in addition to several email server retrieval protocols,
including IMAP and EWS. The communications module 212
may also include data formatting libraries, such as an XML
builder/parser library and text manipulation libraries.

The communications module 212 may provide a high-level
interface that the other modules 212-214 can use to interact
with the email servers 102. The communications module 212
may include adapters for a plurality of standard email
retrieval protocols and thus provides a high-level unified
interface to many existing email servers. In certain embodi-
ments, the module 212 includes an IMAP adapter that is
compatible with IMAP Versions 2 and 4, and may be config-
ured to take advantage of several IMAP extensions, including
the UIDPLUS Extension, the IMAP4 IDLE command, the
IMAP List Extension for Special-Use Mailboxes, the Multi-
mailbox Search Extension, the Extension for Fuzzy Search,
COMPRESS Extension, and the IMAP Metatdata extension.
In further embodiments, the communications module 212
includes an EWS adapter that is compatible with Exchange
Server 2007, 2010, 2013, and all other Exchange Server ver-
sions that include a web services API.

In one embodiment, the communications module interface
includes the commands shown in first column of TABLE 1.
As shown, an IMAP adapter may execute the IMAP com-
mands shown in the second column of TABLE 1 in response
to corresponding interface commands. Further, an EWS
adapter may execute the EWS commands shown in the third
column of TABLE 1 in response to corresponding interface
commands. It should be appreciated that certain commands
shown may return a large amount of data, and thus in certain
embodiments, batching techniques may be used to limit the
size of data transfers between the message processing server
100 and an email server 102 (FIG. 1).

TABLE 1

Interface Command

IMAP Commands(s)

EWS Commands(s)

StartSession(host, port,
username, password)

RetrieveFolderList()
CreateFolder(folderld)
DeleteFolder(folderId)
RetrieveNewMessageHeaders
(folderld, lastMessageUid)

CopyMessages(sourceFolderld,
messageUids,
targetFolderId)

MoveMessages(sourceFolderld,
messageUids,
targetFolderId)

Open TCP/IP connection to host,
port.

CAPABILITY

LOGIN user password

LIST **”

CREATE folderId

DELETE folderId

SELECT folderId

FETCH lastMessageUid:*
BODY.PEEK[HEADER.FIELDS
(MESSAGE-ID FROM ...)]
SELECT sourceFolderld

COPY messageUids
targetFolderId
SELECT sourceFolderld

COPY messageUids
targetFolderId

STORE messageUids + FLAGS
(\DELETED)

EXPUNGE

Open HTTP connection to
host, port using NTLM Auth

FindFolder

CreateFolder folderId
DeleteFolder folderld
itemIds = FindItem folderId,
uid >= lastMessageUid
Getltems itemlds

itemIds = FindItem
sourceFolderld messageUids
Copyltem itemIds,
targetFolderId

itemIds = FindItem
sourceFolderld messageUids
Copyltem itemId
targetFolderId

DeleteItem itemIds

US 9,176,970 B2

9
TABLE 1-continued

10

Interface Command IMAP Commands(s)

EWS Commands(s)

DeleteMessages(folderld, SELECT folderId

messageUids)
STORE messageUids + FLAGS
(\DELETED)
EXPUNGE

EndSession() LOGOUT

Close TCP/IP connection.

itemIds = FindItem folderId
messageUids
Deleteltem itemlds

Close HTTP connection.

As should be appreciated by those in the art, certain exist-
ing email servers/services may purport to implement a stan-
dard mail retrieval protocol (e.g. IMAP), however it is not
uncommon for such servers/services to fail to implement the
entire protocol, or to implement portions of the protocol
incorrectly. Thus, in certain embodiments, the communica-
tions module 212 includes patch code that allows a corre-
sponding protocol adapter workaround such deficiencies, and
thus allows the message processing server 100 to communi-
cate with otherwise incompatible email servers. Alterna-
tively, such patch code could be included within the message
processing module 214. The communications module 212
and/or messaging processing module 214 may determine
whether to use patch code based on one or more of the email
servers attributes, such as the email server host, capabilities
reported by the email server protocol (e.g. using the IMAP
“CAPABILITY” command), or observed email server behav-
ior.

The message processing module 214 may be coupled to
both the database module 210 and the communications mod-
ule 212 (directly and/or via the OS 208), and may be config-
ured to operate upon a plurality of user email accounts. In
certain embodiments, the message processing module 214
can determine the plurality of user email accounts by fetching
alist of email account records (as shown in FIG. 4A) from the
database module 210. The message processing module 214
operates upon each user email account by performing various
useful functions, which are described below in conjunction
with FIGS. 5-7. Suffice it to say here, the message processing
module 214 can operate upon messages stored upon an email
server using the communications module 212 interface and
can operate upon database records using the database module
210 interface.

Referring now to FIG. 3, an account server 112 for use in
the present invention is shown. The account server may
include a CPU 300, memory 302, a disk 304, and a network
interface 306, all of which are coupled together via a com-
munications bus 318. In certain embodiments, the account
server 112 and the message processing server 110 may share
a common physical or virtual computing platform and there-
fore the CPU 300, the memory 302, the disk 304, and the
network interface 306 shown in FIG. 3 may be the same as the
CPU 200, the disk 204, and the network interface 206 shown
in FIG. 2, respectively. In another embodiment, the servers
100 and 112 may exist on separate physical computing plat-
forms. In yet another embodiment, the servers may be sepa-
rate virtual computing platforms that run upon a common
physical computing platform.

The account server 112 may include an operating system
(OS) 308 that is configured to access the memory 302, the
disk 304, and the network interface 306. The OS 308 may be
any suitable operating system discussed above in conjunction
with the message processing server OS 208. The account
server includes a database module 310 and a communications
module 312 (collectively referred to herein as “the modules™)

15

20

25

30

35

40

45

50

55

60

65

that may be the same as or similar to the message processing
server database module 210 and communications module
212, respectively. The account server further includes an
account controller 314 coupled to both the database module
310 and the communications 312, and a graphical user inter-
face (GUI) 316 that is coupled to the account controller 314.

As discussed above in conjunction with the message pro-
cessing server, the modules 310 and 312, the account control-
ler 314, and the GUI 316 generally represent certain function-
ality that can be implemented in software and it should be
appreciated that they can be provided in several different
forms. In certain embodiments, the message processing
server 100 and the account server 112 may be a common
virtual or physical computing platform, and thus message
processing server OS 208 may be the same as the account
server OS 308. In addition, the database module 210/310 and
communications module 212/312 may be shared libraries that
are used by both a message processing server application
process and an account server application process.

In one embodiment, the modules 310 and 312, the account
controller 314, and the GUI 315 are bundled together as a web
application that executes inside a web application server/
container. The web server/container may process concurrent
requests using multithreading, event-driving loops, and/or
multiple processes. Non-limiting examples of suitable web
servers/containers include Apache HTTP Server, Apache
Tomcat, WebSphere, Phusion Passenger, and Node.js.

In certain embodiments, the account controller 314 is
coupled the message processing module 214 and therefore
the account server 212 may provide notifications directly to
the message processing service 200, such as notifying the
message processing server when an email account is added,
changed, or removed from the system. Any suitable type of
inter-process communication may be used.

In certain embodiments, the database modules 212 and 312
can include and/or interact with a common RDBMS, which
may be an embedded database (e.g. SQLite) or a standalone
database (e.g. Postgres or MySQL). In one embodiment, the
database modules 212 and 312 interact with a common data-
base server which may runs on a separate computing platform
(not shown in FIG. 2 or 3). In another embodiment, the
message processing server 100 and the account server 112 are
separate computing platforms and each have access to a
shared disk 204/304 which may be a network-attached stor-
age (SAN) device.

The account controller 314 and GUI 316 operate together
to provide various email account management functions to a
user 108 (FIG. 1). In certain embodiments, the GUI 316
includes a plurality of web pages which allow the user 108 to
add, modify, and remove email accounts from the system. In
one embodiment, the GUI 316 includes a web-based interface
wherein a user may enter an email address, an email server
address/host and port, a username, and a password. The
account server 112 may;, in turn, create a corresponding email
account record (such as is shown in FIG. 4A) using the data-

US 9,176,970 B2

11

base module 210. The account controller may also notify the
message processing server 100 that an account has been
added and is ready to be configured, as discussed further
below in conjunction with FIG. 5.

In one embodiment, the GUI 316 includes a streamlined
web-based interface for adding a new account, wherein the
user need enter only an email address and a password. The
account controller 314 may, in turn, auto-discover any addi-
tionally required email server settings, including a suitable
host, protocol, and port, the username, and whether a secure
connection should be used. This auto-discovery process may
be based on frequently used naming conventions. For
example, an email account username is typically the same as,
or similar to, the email address mailbox (i.e. the part of the
address preceding the “@” symbol). Further, a suitable email
server host can often be derived from the email address
domain (i.e. the part of the address following “@” symbol),
for example by prepending “mail.” or “imap.”’. Moreover, by
convention, port 143 is used for IMAP, port 993 is used for
IMAP over TLS/SSL (IMAPS), port 80 is used for HTTP (i.e.
web services), and port 443 is used for HT'TP over TLS/SSL
(HTTPS). In one embodiment, the account controller 314
may attempt to autodiscover secure server settings before
insecure settings. Thus, it should be appreciated that many
combinations of prospective email server settings can be
derived for use in the autodiscovery process. For example, if
a user enters the email address “jane@nineco.com”, the
account controller 314 may choose to try certain combina-
tions of the host names “nineco.com”, “mail.nineco.com”,
and “imap.nineco.com”, the IMAP and EWS protocols, the
ports 993, 143, 80, and 443, as shown in TABLE 2.

An iterative auto-discovery process may be used wherein
the controller 314 may choose a first combination of settings
and then attempt to establish a mail session based on those
settings. If the account controller successfully establishes a
mail session, the auto-discovered settings and user-entered
password can be stored in a new email account record 400
(FIG. 4A) for use by the message processing server 100.
Otherwise, anew combination of email server settings may be
chosen and the autodiscovery process may be repeated. Sev-
eral combinations of settings may be tried in parallel to reduce
processing time. If none of the chosen combinations lead to a
successful session, the account controller 314 (using GUI
316) may prompt the user to enter any necessary email server
settings.

TABLE 2
Combination Server Host Protocol Port Secure? Username
1 nineco.com IMAP 993 true jane
2 nineco.com IMAP 143 false jane
3 mail.nineco.com IMAP 993 true jane
4 mail.nineco.com IMAP 143 false jane
5 imap.nineco.com IMAP 993 true jane
6 imap.nineco.com IMAP 143 false jane
7 nineco.com EWS 443 true jane
8 nineco.com EWS 80 false jane
9 mail.nineco.com EWS 443 true jane
10 mail.nineco.com EWS 80 false jane
11 ews.nineco.com EWS 443 true jane
12 ews.nineco.com EWS 80 false jane

In certain embodiments, the account controller 314 may
further include a lookup table of email server settings for
popular email service providers, including Yahoo Mail,
Gmail.

In certain embodiments, the account controller 314 and
GUI 316 may provide additional account management fea-

30

40

45

50

55

60

65

12

tures to the user, including the ability to update an email
account record (e.g. change the account password), delete/
disable an email account record, create/update/delete training
records, and view message processing statistics.

Referring now to FIGS. 4A-4D, several database records
types 400-406 for use in the present system are shown. The
records types 400-406 may collectively herein be referred to
as the “schema.” Each database record type 400-406 repre-
sents a data structure having a set of attributes, such as
attributes 402a-402g shown in FIG. 4A. Any or all of data
structures 400-406 may be used with within a message pro-
cessing server and an account server, such as servers 100 and
112 in FIG. 2, The message processing server 100 and/or
account server 112 (FIG. 1) may include a plurality of data-
base records, which can be stored within volatile memory
and/or stored a disk, and each of the database records may
have a structure corresponding to one of the record types
400-406.

In certain embodiments, the database module 210/310
(shown in FIGS. 2/3) utilizes a relational database having a
plurality of relations (commonly referred to as “tables”).
Each table may correspond to one of the plurality of record
types 400-406 and may have a plurality of columns, each
column corresponding to one of the set of attribute names.
Each table may further have a plurality of rows and each row
may correspond to a database record of the same type.

Before describing the database record types 400-406 in
further detail, some introductory concepts are explained.
Most email servers organize messages hierarchically: an
email server may include a plurality of email accounts; each
email account may include a plurality of folders (sometimes
referred to as “mailboxes” and/or “labels™); and each folder
may include a plurality of messages. Further, an email server
may be identified by a hostname/address and port, an email
account may be identified by a username that is unique to the
server, and a folder may be identified by a name/label or other
identifier that is unique to the email account. Certain folders
may be created automatically by the email server (e.g.
“INBOX” and “Sent”), whereas other folders may be created
by auser. In the present system, certain folders may be created
automatically by a message processing server, as discussed
further below in conjunction with FIG. 5.

Referring now to FIG. 4A, an email account record 400
may include attributes which allow a message processing
server (such as processing server 100 in FIG. 1) to operate on
a user’s email account by initiating a mail retrieval session
upon an email server 102 (FIG. 1). Each email account record
400 may include an account id 400a, an email server host
4005, a mail retrieval protocol 400c, an email server port
400d, a secure connection flag 400e, a username 400/, and a
password 400g. The account id 400¢ may be an email
address, a synthetic unique identifier (e.g. a UUID or a
sequence number), or any other identifier unique to the
present system. In certain embodiments, each email account
record 400 may further include a user id attribute (not shown)
which can be used to associate multiple email accounts
belonging to an individual user. The email server host 4005
may be the network address (e.g. IP address) or a qualified
network host name of the email server and the email server
port 4004 may be a TCP port number associated with the
email server application. The secure connection flag 4005
indicates whether a secure socket layer connection (e.g. TLS/
SSL) should be used to communicate over the specified host
4005 and port 4004.

The username 400/ may uniquely identify an email account
within the email server and the password 400g may be a
corresponding authentication token. The password may be a

US 9,176,970 B2

13

passphrase, an encryption key, an OAuth token, or any other
type of authentication token accepted by the email server. In
certain embodiments, the username and/or password can be
encrypted using any suitable symmetric encryption algorithm
(e.g. Blowfish). The username and password may herein col-
lectively be referred to as “authentication tokens.”

Referring now to FIG. 4B, a folder record 402 for use in the
present invention may include an account id 402a, a folder id
402b, a validity 402c¢, a last message id 4024, and an impor-
tance 402¢, as shown. The account id 4024 may correspond to
an email account record and thus may be used to associate a
plurality of folder records 402 with an email account record
400 (i.e. provides a “many-to-one” association with an email
account record). The folder id 4025 is any value that uniquely
identifies the folder within the associated email account and
may be the folder name/label used upon the email server. The
validity 402¢ may correspond to a folder validity value pro-
vided upon the email server and may be used to detect folder
renames and/or used to determine if the last message id value
is valid, as discussed below with FIG. 6. The last message id
4024 may be a unique identifier corresponding to the last
message processed by a message processing server in the
folder, or blank of no messages have been processed yet.
Wherein the associated email account protocol is IMAP, the
last message id 4024 can be the Unique Identifier (UID)
Message Attribute and the validity 402¢ can be the IMAP
folder UIDVALIDITY. As discussed further below in con-
junction with FIG. 6, the importance 402¢ may be used by a
message processing server to decide if an inbound message
should be automatically moved to the associated folder upon
the email server. The importance level can be a number (e.g.
0, 1, 2) or a symbol (e.g. “high,” “medium,” and “low”).

Referring now to FIG. 4C, a training record 404 for use in
the present invention may include an account id 404a, a key
404b, a value 404c, an action 4044, and a create time 404e, as
shown. The account id 404a may correspond to an email
account record account id 400a, and thus may be used to
associate a plurality of training records 404 with an email
account record 400 (i.e. provides a “many-to-one” associa-
tion). The key 4045 may be any message header field, includ-
ing, but not limited to, “Sender”, “From”, “Subject”, “To”,
“cc”, “bee”, “Delivered-To”, “List-Id”, “Message-1D”,
“Resent-Message-1D”, “In-Reply-To”, “Resent-To”,
“Resent-cc”, “Resent-bee”, “Return-Path”, “Content-Type”,
and “X-Autoreply” and the value 404¢ may be the header
value, or derivation thereof, associated with that header field.
Alternatively, the key 4045 may be a symbol that represents a
combination of several headers. For example, the key
“sender” may be used to represent a combination of headers
that may identify a sender, as discussed below with FIGS. 5-7.
The action 4044 may provide instructions for processing
inbound messages which match the key 4045 and value 404c,
and may be provided in any suitable format. In an embodi-
ment, the action 4044 may be an importance level and may
indicate that matching messages should be moved to the
folder associated with the corresponding importance level
(i.e. the folder associated with a folder record having an
“importance” attribute which matches the training “action”
attribute). In certain embodiments, the action 4044 may be
domain-specific language (DSL). The create time 404e¢ may
indicate the time the training action was detected and/or the
time the training record was created. The create time 404e
may be used to resolve training conflicts, as discussed below
in conjunction with FIG. 6. Training records may be created
in response to a direct user action, in response to indirect user
action, or automatically based on the message processing
methods described below in FIGS. 5 and 7.

10

20

25

30

35

40

45

50

55

60

14

Referring now to FIG. 4D, a processed message record 406
for use in the present invention may include an account id
406a,a message id 4065, and a plurality of destination folders
ids 406c¢, as shown. The account id 4064 may correspond to an
email account record account id 400a, and thus may be used
to associate a plurality of processed message records 406 with
an email account record 400 (i.e. provides a “many-to-one”
association). The message id 4065 can be any message iden-
tifier that is unique within the associated email account. In an
embodiment, the message id 4065 may be the “Message-1D”
header value, as described in RFC 822. However, it should be
appreciated that some email messages have a blank or miss-
ing “Message-1D” header value and thus, in certain embodi-
ments, a surrogate identifier may be used instead. For
example, a surrogate identifier can be created by concatenat-
ing certain other message header values. Each of the plurality
of destination folders ids 406¢ may correspond to a folder
record folder id 4025 and thus may be used to associate a
processed message record 406 with a plurality of folder
records 402.

It should be appreciated that each record type 400-406 may
include additional attributes not shown in FIGS. 4A-4D. For
example, each record type 400-406 may include a create
timestamp and/or an update timestamp (not shown) that indi-
cate the time a record was created and last updated, respec-
tively.

Referring now to FIGS. 5-7, it should be appreciated that
these flowcharts correspond to the below contemplated tech-
niques and would be implemented in a computer system, or
more specifically, a message processing system 114 (FIG. 1).
Rectangular elements (typified by element 502 in FIG. 5),
herein denoted “processing blocks,” represent computer soft-
ware instructions or groups of instructions. Diamond shaped
elements (typified by element 612 in FIG. 6), herein denoted
“decision blocks,” represent computer software instructions,
or groups of instructions, which affect the execution of the
computer software instructions represented by the processing
blocks.

Alternatively, the processing and decision blocks represent
steps performed by functionally equivalent circuits such as a
digital signal processor circuit or an application specific inte-
grated circuit (ASIC). The flow diagrams do not depict the
syntax of any particular programming language. Rather, the
flow diagrams illustrate the functional information one of
ordinary skill in the art requires to fabricate circuits or to
generate computer software to perform the processing
required of the particular apparatus. It should be noted that
many routine program elements, such as initialization of
loops and variables and the use of temporary variables are not
shown. It will be appreciated by those of ordinary skill in the
art that unless otherwise indicated herein, the particular
sequence of blocks described is illustrative only and can be
varied without departing from the spirit of the invention.
Thus, unless otherwise stated the blocks described below are
unordered meaning that, when possible, the steps can be
performed in any convenient or desirable order.

Referring to FIG. 5, an exemplary method 500 of config-
uring an email account for use in the present system is shown.
In one embodiment, the method described herein may be
performed by a message processing server 100 and imple-
mented within a message processing module 214 (FIG. 2).
However, in another embodiment, the method may be per-
formed, at least in part, by an account server 112 and imple-
mented within an account controller 314 (FIG. 3).

First, an email account record is fetched 502 from a data-
baseusing a database module 210 (FIG. 2). The email account
record may have the same or similar structure as record 400 in

US 9,176,970 B2

15

FIG. 4A. The email account record, which is associated with
anemail account, may have been previously created/stored by
an account server in response to user actions, as described
above in conjunction with FIG. 3. In certain embodiments,
the email account record authentication tokens may be sym-
metrically encrypted and, thus, the next step of the process
may be to decrypt 504 authentications tokens. Using the
email server settings and decrypted authentication settings
from the email account record, a session can be established
506 upon a suitable email server using a communications
module 212 (FIG. 2).

Next, a list of existing folder ids associated with the email
account may be retrieved 508 using the communication mod-
ule 212, as shown.

The message processing server 100 may proceed to create
510 a plurality of default folders based upon a list of default
“importance” levels and a folder id/name corresponding to
each level. Each default importance level can be a number
(e.g. 0,1, 2)or asymbol (e.g. “high,” “medium,” and “low™)
and each corresponding folder id can be any folder id that is
valid within email account. In one embodiment, the present
system includes a default importance level “high” and a cor-
responding to a folder id “INBOX.” The server 100 may
compare the list existing folder ids to the list of default impor-
tance folder ids and create the default importance folders that
do not yet exist 510 using the communications module 212.

Next, the message processing server 100 may store/create
512 a plurality of folder records, each folder record corre-
sponding to a folder within the email account. Each folder
record may have the same or similar structure to record 402
shown in FIG. 4B. In particular, each folder record may have
an “account id” attribute corresponding to the email account
record “account id” attribute. Folder records that correspond
to default importance folders may have a “folder id” attribute
corresponding to the default importance folder id and an
“importance” attribute corresponding to the default impor-
tance folder importance level.

Still referring to FIG. 5, the message processing server 100
may next determine 514 a plurality of folder ids correspond-
ing to folders that predominately include outbound email,
herein referred to as “sent folder ids.” As disclosed herein,
various techniques may be employed to determine the sent
folder ids. As will be appreciated be those in the art, most
email accounts include at least one folder into which out-
bound email (that is email sent by the account’s user) is
copied, either by the user’s email client or by email server.
Moreover, certain folder ids/names are common given to the
sent folder, including as “Sent” and “Sent Mail” Thus,
according to one technique, the message processing server
100 may determine the plurality of sent folder ids by match-
ing (e.g. using regular expression pattern matching) each of
the retrieved folder ids to each of the common sent folder ids.
According to another technique, the message processing
server 100 may determine the sent folder ids by searching for
folders associated with the mail account that include a high
percentage of emails sent by the user. For example, the server
100 could retrieve a list of all message ids within a folder
having a “FROM” address associated with the user’s email
account and compare the size of this list against the total
number of messages within the folder; the server 100 could
repeat this process for several/all of the folders associated
with the account. According to yet another technique, the sent
folder id may be provided by the user 108 via the account
server 112 (FIG. 1).

Next, using the sent folder ids previously determined, the
message processing server 100 can retrieve 516 recipient
headers for a plurality of messages within the sent folders

25

30

35

40

45

16

using the communications module 212. In certain embodi-
ments, headers for all messages may beretrieved. However, to
reduce the time required to configure a new account, in other
embodiments only a sample of messages may be retrieved
and analyzed as described herein. Such a sample can be based
upon a maximum number of messages, a message date range,
or any other suitable criteria. The recipient headers may
include headers that identify the recipient of a message,
including, but not limited to, “To”, “cc”, “bec”, “Delivered-
To”, and “In-Reply-To.”

Having retrieved certain headers for a plurality of sent
messages, the message processing server 100 can proceed to
determine 518 an importance level for each corresponding
message recipient using any suitable technique/heuristic.
According to one technique, each recipient is assigned the
same importance level as every other recipient. According to
another technique, frequency analysis may be employed
wherein each recipient may be assigned an importance level
based upon the total number of messages sent to that recipi-
ent. In another technique, recency analysis may be applied
whereby a recipient of a more recently sent message may
receive a higher importance level than the recipient of a less
recently sent message.

Using the previously determined recipient importance
level, the message processing server 100 may next store/
create 520 a plurality of training records. Each training record
may include an “account id” attribute corresponding to the
email account “account id” attribute, a “key” attribute having
a symbolic value (e.g. “sender”), a “value” attribute corre-
sponding the recipient address and/or name, and an “action”
attribute corresponding to the determined recipient impor-
tance level. Thus, it should now be appreciated that the
method 500 described hereinabove uses certain techniques/
heuristics to train the message processing system based upon
the user’s past behavior. Such training allows a message
processing server to predicatively filter inbound messages, as
described below in conjunction with FIG. 6.

Finally, having configured the email account, the email
server 100 may end 522 the email server session via the
communications module 212.

Referring now to FIG. 6, an exemplary method of process-
ing electronic messages 600 is shown. The method described
hereinbelow can be performed by a message processing
server 100 and implemented within a message processing
module 214 (FIG. 2).

First, an email account record (such as record 400 in FIG.
4A) is fetched 602 from a database using a database module
210 (FIG. 2). The email account record, which is associated
with an email account, may have been previously configured
according to the method described above in conjunction with
FIG. 5. Next, the email account record authentication tokens
may be decrypted 604 and an email server session may be
established 606 via a communications module 212 (FIG. 2).

Next, the message processing server 100 may fetch an
Inbox folder record associated with the user’s Inbox 608. The
folder record may have the same structure as record 402
described above with FIG. 4B. In particular, the Inbox folder
record may have a “last message id” attribute and a “validity”
attribute. Wherein the last message id is an IMAP UID value,
the message processing server 100 may additionally retrieve
the current Inbox UIDVALIDITY value from the email server
and disregard the folder record last message id if the folder
record validity does not match the retrieved UIDVALIDITY
(i.e. the last message id is no longer valid).

Having the last message id, the message processing server
100 can proceed to retrieve 610 headers for a plurality of
unprocessed messages within the Inbox using the communi-

US 9,176,970 B2

17

cations module 212. In one embodiment, the server 100 may
retrieve the headers: “Sender”, “From”, “Return-Path”,
“Delivered-To”, “To”, “In-Reply-To”, “cc”, “bcc”, “Sub-
ject”, “List-Id”, and “Message-ID”. If no headers are
retrieved 612 (i.e. no unprocessed messages exist within the
account Inbox), the message processing server 100 may shut
down or wait for new messages to arrive, as discussed here-
inbelow. Otherwise, the server 100 may process each of the
unprocessed messages.

The message processing server 100 may select 614 the next
unprocessed message for processing. First, the server 100
may fetch 616 a plurality of training records associated with
anunprocessed message from the database using the database
module 210. The training records may have a structure similar
to or the same as record 404 in FIG. 4C. The training records
may have been created automatically according to the method
discussed above with FIG. 5, indirectly by the user according
to the method discussed below with FIG. 7, or directly by the
user via the account server 112 (FIG. 1). The server 100 may
fetch training records based upon various criteria. For
example, the message processing server 100 may fetch all
records having the key “sender” and a value similar to any
header that identifies the sender (e.g. “Sender”, “From”, and
“Return-Path”), all records having the key “Subject” and a
value similar to the unprocessed message “Subject” header,
and/or all records having the key “List-1d” and a value similar
to the unprocessed message “List-Id” headers.

Next, the message processing server 100 may determine
618 a plurality of actions to take upon the unprocessed mes-
sage. In certain embodiments, each such action includes a
plurality of target folders and an indication as to whether the
message should be moved or copied to the target folders.

In certain embodiments, the message processing server
100 determines a plurality of actions to take based upon the
plurality of training record “action™ attributes. It should be
appreciated that two or more of the fetched training records
may have conflicting actions. For example, one training
record may indicate that the message should be moved to a
“high” importance folder, whereas a second training record
may indicate that the message should be moved to a “low”
importance folder. Thus, the message processing server 100
(more specifically, the message processing module 214) may
include various methods for resolving training conflicts.
According to one method, the sever 100 may choose the
action corresponding to the training record with the most
recent “create time” attribute. According to another method,
the server 100 may choose the action which appears most
frequently among the fetched training records. In yet another
method, the server may choose an action corresponding to a
high importance level over an action corresponding to a low
importance level. Any suitable conflict resolution method, or
combination of methods, may be used within the present
system.

The server 100 may further determine the actions to take
based upon a plurality of shared rules provided within the
message processing module 214. Similar to a training record,
a shared rule may include key/value pair to match and an
action to take upon such a match. Such rules can be global,
meaning they apply to all email accounts within the system,
or otherwise shared and applied across one or more accounts.
Such rules may be included statically with the application,
provided within a configuration file, and/or maintained within
the database. The message processing server 100 may further
include techniques to resolve conflicts between shared rules
and training records, including any of the conflict resolution
techniques described hereinabove.

10

15

20

25

30

35

40

45

50

55

60

65

18

Ifno training records and no shared rules match the unproc-
essed message, the message processing server 100 may apply
a default action. In one embodiment, the default action is to
move the message to a folder corresponding to a “low” impor-
tance level.

Next, the message processing server 100 can copy or move
620 the unprocessed message to the target folder ids using the
communications module 212. It should be appreciated that
any/all of the target folder ids may have been rendered invalid
due to a user action, such as the user renaming a folder using
an email client. Therefore, in one embodiment, the server 100
may determine if any of the target folder ids are invalid and,
further, what the corresponding valid folder ids are (e.g. the
new name of a renamed folder). In one embodiment, the
server 100 may determine the new folder id by comparing the
associated folder record “validity” attribute to a list of folder
validity values retrieved from the email server. In another
embodiment, the server 100 may determine the new folder id
by periodically retrieving a list of folders from the email
server and comparing the current list to the previous list.

In one embodiment, the message processing server 100
may aggregate (“batch”) certain operations that read or write
from the email server to reduce the number of network opera-
tions and thus improve system efficiency.

Next, the message processing server 100 may store 622 a
processed message record corresponding to the newly pro-
cessed message. The processed record message may have the
same or similar structure as record 406 in FIG. 6. In particular,
the processed record message may have a message id associ-
ated with the newly processed message id and a plurality of
folder ids associated with the plurality of target folders. As
will be appreciated, the processed message records may serve
several different purposes with the present system. In one
respect, the processed message records can be used to allow a
user to indirectly train the system, as discussed below in
conjunction with FIG. 7. In another respect, the processed
message record serves as a history of processing operations
performed by the present system and therefore can be used to
store messages to a user’s Inbox upon request.

Next, the Inbox folder record “last message id” attribute
may be updated 624 to correspond to the newly processed
message and stored in the database via the database module
210. In certain embodiments, the Inbox folder record may be
stored only periodically to reduce the number of database
operations and thus improve system efficiency.

Having processed all messages in the user’s Inbox, the
message processing server 100 may either 626 shutdown or
wait for new messages to arrive. In one embodiment, the
server 100 may shutdown in response to a signal sent by an
operator.

The message processing server 100 may use either a poll-
ing-based technique or an interrupt-based technique to wait
628 for new messages. In one embodiment, the server 100
uses the IMAP IDLE feature (as described in RFC 2177) to
receive a notification from certain email servers that a new
message has within the user’s Inbox. In another embodiment,
the server 100 checks for new mail periodically (i.e. polls)
using the communications module 212.

Before the message processing server 100 shuts down, it
may first end 630 the session upon the email server using the
communications module 212. As discussed above with FIG.
2, the message processing server 100 may assign each email
account to a separate process/thread, and thus only the corre-
sponding process/thread may be terminated whereas any
other server 100 processes/threads (including a parent pro-
cess/thread) may continue running.

US 9,176,970 B2

19

It will now be appreciated that the method described here-
inabove in conjunction with FIG. 6 provides various message
processing capabilities, including predictive filtering, and is
compatible with most existing email servers and email cli-
ents. In particular, the method may help users reduce the
number of messages in their Inbox by automatically moving
certain messages to other folders.

Referring now to FIG. 7, an illustrative method 700 of
training a message processing system is shown. The method
described hereinbelow can be performed by a message pro-
cessing server 100 and implemented within a message pro-
cessing module 214 (FIG. 2). It will be appreciated by those
of'ordinary skill in the art that the methods illustrated in FIGS.
6 and 7 can be performed by a single processor and/or system
and, further, can be performed in parallel or serially.

First, an email account record (such as record 400 in FIG.
4A) is fetched 702 from a database using a database module
210 (FIG. 2). The email account record, which is associated
with an email account, may have been previously configured
according to the method described above in conjunction with
FIG. 5. Next, the email account record authentication tokens
may be decrypted 704 and an email server session may be
established 706 via a communications module 212 (FIG. 2).

Next, a folder into which a user may train messages, herein
referred to as a “training folder,” is selected 708. In general,
any folder within the email account may be selected as a
training folder and the method described herein may be
repeated for several different training folders. In one embodi-
ment, the present method may be repeated for all folders
within the email account, thus allowing the user to train
messages into any folder. However, it will be appreciated that
some email accounts have a very large number of folders, and
therefore it may be impractical to operate upon all such fold-
ers. Thus, in one embodiment, only folders associated with an
importance level (as discussed above in conjunction with
FIGS. 4B and 5) are selected to be training folders.

Next, the message processing server 100 may retrieve 710
aplurality of message ids within with the training folder using
the communications module 212. Further, the server 100 may
fetch 712 a plurality of processed message records using the
database module 210, wherein each ofthe processed message
records may have a similar structure to record 406 of FIG. 4D
and a folder id associated with the training folder.

Next, the server 100 may determine 714 a plurality of
trained message ids by comparing the retrieved message ids
to the processed message record message ids. In one embodi-
ment, the server can detect messages ids that are included in
the retrieved messages ids but are not included in the pro-
cessed message record id (i.e. messages that were copied to
the training folder by a user).

Next, the message processing server 100 may retrieve 716
certain headers associated with the plurality of trained mes-
sage identifiers using the communications module 212. In one
embodiment, the retrieved headers include all headers that
may identify the message sender, including “Sender”,
“From”, and “Return-Path.”

Next, the server 100 may create/store 718 a training record
corresponding to each of the plurality of trained messages.
Each training record may have the same or similar structure to
record 404 of FIG. 4C. Specifically, each training record may
have a “key” attribute corresponding to one of the header
names and/or symbol and a “value” attribute which corre-
sponds to one of the header values, or a derivation of one or
more of the header values. In one embodiment, each training
record key is “sender” and value is a combination and/or
derivation of headers that may identify the message sender.

10

15

20

25

30

35

40

45

50

55

60

65

20

Finally, the message processing server may end 720 the
session upon the email server using the communications
module 212.

It will now be appreciated by those learned in the art that
the method described in FIG. 7 allows a user to indirectly train
the present system by moving or copying a message into a
folder upon an email server and is therefore compatible with
existing email servers and clients and does not require any
new or special user interface.

Moreover, it should be appreciated that the systems and
methods disclosed above function without needing to down-
load, inspect, or otherwise read the body of any message and
therefore provide a high level of privacy to users.

Once given the above disclosure, many other features,
modifications, and improvements will become apparent to the
skilled artisan. Such features, modifications, and improve-
ments are therefore considered to be part of this invention,
without limitation imposed by the example embodiments
described herein. Moreover, any word, term, phrase, feature,
example, embodiment, or part or combination thereof, as
used to describe or exemplify embodiments herein, unless
unequivocally set forth as expressly uniquely defined or oth-
erwise unequivocally set forth as limiting, is not intended to
impart a narrowing scope to the invention in contravention of
the ordinary meaning of the claim terms by which the scope of
the patent property rights shall otherwise be determined. All
references discussed and disclosed herein are hereby incor-
porated by reference in their entirety.

What is claimed is:
1. A method for processing electronic messages, compris-
ing:

connecting, with an application, to an email account
located upon a remote message server, wherein the email
account is associated with a user;

determining one or more sent folders located upon the
remote message server and associated with the email
account, wherein the one or more sent folders comprise
messages sent by the user;

retrieving, from the remote message server, header infor-
mation for one or more sent messages located within the
sent folders;

determining a recipient for each of the sent messages using
the respective header information;

storing, to a database, training information comprising a
mapping between one or more of the sent message
recipients and importance levels, wherein the impor-
tance level associated with a given recipient is deter-
mined based upon a number of messages sent to the
given recipient;

determining a source folder located upon the remote mes-
sage server and associated with the email account;

retrieving, from the remote message server, header infor-
mation for one or more unprocessed messages located
within the source folder;

determining a sender for each of the unprocessed message
using the respective header information;

determining, for at least one of the unprocessed messages,
target folder located upon the remote message server
using training information associated with the respec-
tive sender, wherein the database includes training infor-
mation associated with the respective sender; and

issuing a command to the remote message server to move
the at least one unprocessed message from the source
folder to the respective target folder, wherein the source
folder is a different folder than the target folder.

US 9,176,970 B2

21

2. The method of claim 1 further comprising:

issuing a command to the remote message server to delete
one or more of the unprocessed messages from the
source folder.

3. The method of claim 1 further comprising:

storing a processed message record in a database, the pro-

cessed message record having a message identifier for
the at least one unprocessed message and a folder iden-
tified for the target folder.

4. The method of claim 1 further comprising:

fetching a user account record from a database, the account

record having a plurality of authentication tokens; and
authenticating with the message server using the plurality
of authentication tokens.

5. The method of claim 4 wherein at least one of the
plurality of authentication tokens is encrypted.

6. The method of claim 1 wherein connecting to an email
account located upon a remote message server comprises
connecting to a remote email server using Internet Message
Access Protocol (IMAP).

7. The method of claim 1 further comprising:

receiving a notification from the remote message server in

response to a message being delivered to the source
folder.

8. The method of claim 1 further comprising:

detecting that the target folder was renamed upon the

remote message servet,

wherein issuing a command to the remote message server

to move the at least one unprocessed message from the
source folder to the respective target folder comprises
issuing a command having a new target folder name.

9. The method of claim 8 wherein detecting that the target
folder was renamed comprises:

fetching a plurality of folder records from a database, each

folder record having a last known folder identifier;
retrieving a plurality of current folder identifiers from the
remote message server, and

comparing the plurality of last known folder identifiers to

the plurality of current folder identifiers.

10. The method of claim 1, further comprising:

determining that the at least one unprocessed message was

moved from the target folder to a second folder located
upon the remote message server; and

updating the stored training information to change the

importance level associated with a sender of the at least
one unprocessed message.

11. A computer system, comprising:

a microprocessor; and

an application configured to execute on the microprocessor

and to:

connect, with an application, to an email account located

upon a remote message server, wherein the email
account is associated with a user;

determine one or more sent folders located upon the remote

message server and associated with the email account,
wherein the one or more sent folders comprise messages
sent by the user;

retrieve, from the remote message server header informa-

tion for one or more sent messages located within the
sent folder;

determine a recipient for each of the sent messages using

the respective header information;

store, to a database, training information comprising a

mapping between one or more of the sent message
recipients and importance levels, wherein the impor-

10

15

20

25

30

40

45

50

55

60

65

22

tance level associated with a given recipient is deter-
mined based upon a number of messages sent to the
given recipient;

determine a source folder located upon the remote message

server and associated with the email account;

retrieve, from the remote message server, header informa-

tion for one or more unprocessed messages located
within the source folder;

determine a sender for each of the unprocessed messages

using the respective header information;

determine, for at least one of the unprocessed messages, a

target folder located upon the remote message server
using training information associated with the respec-
tive sender, wherein the database includes training infor-
mation associated with the respective sender; and

issue a command to the remote message server to move the

at least one unprocessed message from the source folder
to the respective target folder, wherein the source folder
is a different folder than the target folder.

12. The system of claim 11, herein the application config-
ured to connect to an email account located upon a remote
email server using Internet Message Access Protocol
(IMAP).

13. The system of claim 11, wherein the application is
further configured to detect that the target folder was renamed
upon the remote message server.

14. A computer program product embodied on a non-tran-
sitory computer medium, the computer program product
comprising instructions for:

connecting, with an application, to an email account

located upon a remote message server, wherein the email
account is associated with a user;

determining one or more sent folders located upon the

remote message server and associated with the email
account, wherein the one or more sent folders comprise
messages sent by the user;

retrieving, from the remote message server, header infor-

mation for one or more sent messages located within the
sent folders;

determining a recipient for each of the ent messages using

the respective header information;
storing, to a databases, training information comprising a
mapping between one or more of the sent message
recipients and importance levels, wherein the impor-
tance level associated with a given recipient is deter-
mined based upon a number of messages sent to the
given recipient;
determining a source folder located upon the remote mes-
sage server and associated with the email account;

retrieving, from the remote message server, header infor-
mation for one or more unprocessed messages located
within the source folder;

determining a sender for each of the unprocessed messages

using the respective header information;
determining, for at least one of the unprocessed messages,
a target folder located upon the remote message server
using training information associated with the respec-
tive sender, wherein the database includes training infor-
mation associated with the respective sender; and

issuing a command to the remote message server to move
the at least one unprocessed message from the source
folder to the respective target folder, wherein the source
folder is a different folder than the target folder.

15. The computer program product of claim 14, further
comprising instructions for:

detecting that the target folder was renamed upon the

remote message server,

US 9,176,970 B2

23

wherein issuing a command to the remote message server
to move the at least one unprocessed message from the
source folder to the respective target folder comprises
issuing a command having a new target folder name.

16. The computer program product of claim 14, further

comprising instructions for:

determining that the at least one unprocessed message was
moved from the target folder to a second folder located
upon the remote message server; and

updating the stored training information to change the
importance level associated with a sender of the at least
one unprocessed message.

#* #* #* #* #*

5

10

24

